Combining scientific languages to create an invisibility cloak

An assistant professor at Brussels' Vrije Universiteit and a visiting professor at Harvard, Vincent Ginis is a brilliant scientist who won a Solvay Award in 2014 and was designated as one of the top 50 tech pioneers in Belgium in 2017. His particular area of study is optics, but he makes a strong case for the combination of different scientific disciplines, or "languages", to drive progress in research. As proof of this, he demonstrates how applying Einstein's general relativity language to the field of optics is being used to figure out how to make an object invisible. You don't follow? Let's put it like this: using the curvature of space-time, scientists can find a way to deflect light rays in order to bend them around an object, making it effectively invisible. "In other words, a refractive index - which is a material property of materials that we can engineer - has the same effect on light as the bending of space-time in outer space", explains Mr. Ginis. Sounds like science fiction? Well, it isn't anymore. The main hurdle to overcome was to find the right materials with the right parameters to make that bending of light possible; this is where nanotechnology kicks in.
account creation

TO READ THIS ARTICLE, CREATE YOUR ACCOUNT

And extend your reading, free of charge and with no commitment.



Your Benefits

  • Access to all content
  • Receive newsmails for news and jobs
  • Post ads

myScience