New vulnerability found in viruses may help develop cure for the common cold

A team of researchers led by KU Leuven virologist Johan Neyts have discovered a new feature of so-called picornaviruses that may allow for the development of new antiviral medications for the common cold, polio, and other illnesses.

Picornaviruses include rhinoviruses and enteroviruses. Rhinoviruses cause millions of cases of upper respiratory infections ("colds") yearly and contribute to asthma, and enteroviruses are responsible for millions of infections including cases such as meningitis, encephalitis and polio. There are currently no antivirals that can be used for the treatment or prevention of any of the rhinoor enteroviruses.

To replicate, viruses must interact with host cells, and in doing so, often need to change shape; stabilising the virus particle is therefore thought to be a promising strategy for preventing replication. In a search for potential antiviral candidates, the authors found a compound that stabilised a model picornavirus. They performed cryo-electron microscopy (cryo-EM) of the drug-virus complex to determine how the drug exerted its effect. Cryo-EM involves combining thousands of two-dimensional images to develop a highly detailed three-dimensional image of the target.

Previously unknown pocket

Although picornaviruses have been studied for decades, the authors discovered a previously unknown pocket, or indentation, on the surface of the virus, in which the compound had lodged, thereby stabilising it against the kind of shape change that would allow interaction with host cells. The team then used the compound as a starting point to generate multiple variants of the antiviral molecule to maximise the activity against a broad range of picornaviruses.

A major challenge in developing antiviral medications is that viruses mutate quickly, changing in ways that make a once-useful drug ineffective. While it is possible that the newly-discovered pocket may also mutate to make picornaviruses resistant to therapies developed against them, the authors suggest the pocket may be crucial enough for viral replication that viruses containing mutant versions may be less viable, making the drug relatively "resistance-proof."

Further work to develop these compounds into effective drugs is ongoing. "These results open up a new avenue for the design of broad-spectrum antivirals against rhinoviruses and enteroviruses, both of which are major human pathogens," Neyts said.

Animation

The video below shows a virus particle with the antiviral substance Click here to read the paper "A novel druggable interprotomer pocket in the capsid of rhinoand enteroviruses" in Plos Biology (doi: 10.1371/journal.pbio.3000281). 

THE BRUSSELS TIMES - Flemish and international researchers come one step closer to treatment for leukaemia in children

GIZMODO - New studies reveal intimate links between human microbiome and preterm pregnancies, IBD, and more


This site uses cookies and analysis tools to improve the usability of the site. More information. |